Further investigations on *Discoglossus* bioacoustics: Relationships between *D. galganoi galganoi*, *D. g. jeanneae* and *D. pictus scovazzi*

Miguel Vences, Frank Glaw

Zoologisches Forschungsmuseum Alexander Koenig, Department of Herpetology, Adenauerallee 160, D-53113 Bonn, Germany

Abstract. Advertisement calls of *Discoglossus galganoi jeanneae* from two localities in southern Spain and *D. pictus scovazzi* from France were analyzed. Call duration as well as ratio of pulse group intensities and durations clearly group *D. pictus scovazzi* with the other subspecies of *D. pictus* (pictus and maurus). The calls of the taxon *jeanneae* show some differences to calls of populations of *D. g. galganoi* from northern Spain, but are more similar to calls of *D. g. galganoi* than to those of *D. pictus scovazzi*. These data support the status of *jeanneae* as subspecies of *galganoi*.

Introduction

The taxonomy of the genus *Discoglossus* and the relationships and differentiation among the species and subspecies of this genus have been subject of several studies during the last decades (Lanza et al., 1984; Capula et al., 1985; Busack, 1986; Clarke and Lanza, 1990; Glaw and Vences, 1991; Capula and Crott, 1993; Fritz et al., 1994). Presently eight valid taxa are recognized (Lanza et al., 1986).

Species-specific differences between the advertisement calls of *Discoglossus pictus* and *D. sarasin* were first revealed by Weber and Schneider (1971) and Weber (1974). In a previous publication (Glaw and Vences, 1991) we confirmed these differences and described the advertisement calls of *D. montalentii* and *D. galganoi*, which also showed several species-specific characteristics. We found no significant differences between the advertisement calls of *D. pictus sarasin* from France and *D. pictus pictus* from Sicily.

Except for the possibly extinct *D. nigroviridis* from Israel, the calls of only two *Discoglossus* taxa remained unknown: *Discoglossus pictus scovazzi* from Morocco and *Discoglossus galganoi jeanneae*. The relationships of these taxa are of special interest since Busack (1986) described *D. jeanneae* as a full species, and regarded *D. jeanneae* as
more closely related to the *Discoglossus* from Morocco (*D. p. scouleri*) than to those from the Iberian Peninsula north of the Guadalquivir river (*D. galganoi*). This assumption was the basis for Busack's (1986) biogeographic scenario regarding the designation of the Guadalquivir river basin and the formation of the Strait of Gibraltar.

However, Lenz et al. (1986) did not find high genetic distances between *jeanneae* and *Discoglossus galganoi* from northern Spain, and therefore regarded *jeanneae* as subspecies of *D. galganoi*.

In this study we describe the advertisement calls of *D. galganoi* *jeanneae* and *D. p. scouleri*, and discuss the relationships of these taxa with *Discoglossus galganoi* and *D. p. scouleri* using the bioacoustic data.

Material and methods

For this study advertisement calls of the following *Discoglossus* males were analyzed:

1. *Discoglossus galganoi* *jeanneae* from Poncuberta (Orense, Spain), the type locality of *jeanneae*.
2. *Discoglossus galganoi* *jeanneae* from near Fucines (Cadiz, Spain), the type locality of *jeanneae*.

Calls were recorded in captivity. Most specimens called spontaneously, only the *jeanneae* specimen from Fucines was stimulated by injection of gonadotrophic hormones. Recording temperatures are given in table 1.

Calls were digitized and analyzed by the first author on an IBM-compatible Computer with the programs DISCOPE and SOUND ANALYZER (developed by Prof. W. Warkowksi, KTH). Sonagrams and oscillograms were made with a MEADAV Spektror 3.2 sound analyzing system.

Discoglossus calls generally consist of an expiratory pulse group followed by an inspiratory pulse group (Weber, 1974). In the following text each call duration is used for the period from the beginning of the first pulse group to the end of the second pulse group. The ratio of intensities of expiratory and inspiratory pulse groups (intensity ratio exp.:insp.) is here defined as quotient of the heights (as measured in mm) of the maximum peaks of the respective pulse groups on the oscillogram. For additional discussion of recording conditions and sonagram interpretation see Glaw and Vences (1991).

Results

The call durations found in the investigated specimens are given in table 1.

Discoglossus p. scouleri: The calls of all three specimens were very similar to the human ear. The impression was that of a typical *p. scouleri* as described in Glaw.

Table 1. Duration of advertisement calls in *Discoglossus*. Call duration is given in milliseconds (ms) and refers to the period between beginning of expiratory pulse group and end of inspiratory pulse group. It is given as mean value ± standard deviation (maximum and minimum values in brackets). n is the number of analyzed calls. Differences are significant (t-test; P < 0.001) between all populations except for the comparison *D. p. piceus*/*D. p. scouleri*.

<table>
<thead>
<tr>
<th>Population</th>
<th>Sample size</th>
<th>Call duration (ms)</th>
<th>Recording temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. g. galganoi, La Coruña</td>
<td>10</td>
<td>1810 ± 235 (1480-2100)</td>
<td>19-20°C</td>
</tr>
<tr>
<td>D. g. galganoi, Orense</td>
<td>50</td>
<td>1310 ± 305 (1070-1600)</td>
<td>19°C</td>
</tr>
<tr>
<td>D. g. jeanneae, Fucines</td>
<td>20</td>
<td>2140 ± 445 (1700-2400)</td>
<td>19°C</td>
</tr>
<tr>
<td>D. g. jeanneae, Ronda</td>
<td>20</td>
<td>2080 ± 350 (1750-2400)</td>
<td>19°C</td>
</tr>
<tr>
<td>D. p. scouleri, Ceuta</td>
<td>10</td>
<td>2140 ± 345 (1800-2500)</td>
<td>19°C</td>
</tr>
</tbody>
</table>

Figure 1. Sonagram and oscillogram of a call series of *Discoglossus p. scouleri* from Ceuta. The series consists of 10 calls; no intervals are spaced between calls, so that the exact limits between calls and pulse groups are difficult to recognize.

and Vences (1991), and this was confirmed by the analysis: Calls were unharmonious, call duration was low (even somewhat lower than in *D. p. piceus* and *D. p. auritus*; see table 1). Mostly several calls were arranged in a series, no silent intervals could be found between the calls of one call series. Figure 1 shows a sonagram and
an oscillogram of a typical call series with 10 calls. Inspiratory and expiratory pulse
groups had less often the same duration than in other *pictus* subspecies; however there
was no recognizable trend which would have resulted in one pulse group being regularly
shorter than the other (ratio of pulse group durations exp:insp was between 0.7 and
1.3 in 46% of the cases, smaller than 0.7 in 26%, larger than 1.3 in 28%; n = 90). Both
pulse groups had mostly the same intensity, as is typical for *D. pictus* (intensity ratio
exp:insp was smaller than 0.9 in 16% of the cases, between 0.9 and 1.1 in 66%, larger
than 1.1 in 18% of the calls; n = 70).

Discoglossus galiganoi galiganoi from Orense: The calls of this male were very similar
to the previously studied population of La Coruña (the distance between both populations
is about 125 km), but mean call duration was somewhat lower (see table 1). Only in
a few cases (n = 3) was it possible to distinguish between expiratory and inspiratory
pulse group on the oscillograms, but in these cases the second (inspiratory) pulse group
was always much shorter (quotient about 3.5:1). The calls were unharmonious; distinct
silent intervals of about 100 ms occurred between the calls of a series.

Discoglossus galiganoi jeanneae from near Ronda: The distribution area of jeanneae
was defined as Spain, south of the Guadalquivir river by Bussack (1986). We therefore
consider the specimen from Ronda as jeanneae. The collecting site is located about

70 km from the type locality of jeanneae. The calls of the recorded male were similar to
those described from northern Spain. They were unharmonious, and when arranged in
series a distinct silent interval (30-100 ms) was present between the calls (fig. 2). When
two pulse groups were recognizable on the oscillogram (n = 9), the first (expiratory)
pulse group was always much longer than the second (inspiratory) pulse group (ratio 2:1
to 6:1) as it is typical for *D. galiganoi*. However the calls were shorter than those from
northern Spain (see table 1).

Discoglossus galiganoi jeanneae from near Facinas (type locality of jeanneae): The
calls from one male of this population were also similar for the human ear to those from
northern Spain. However, a detailed analysis (sonogram and oscillogram shown in fig. 3)
revealed several differences. Calls were shorter (even shorter than those from the Ronda
specimen; table 1), they were often arranged in series without distinct silent intervals
between them (but these intervals occurred in some series), and the second (inspiratory)
pulse group was often of similar duration or even longer than the first (expiratory) pulse
group (ratio of pulse group durations exp:insp was smaller than 0.7 in 32%, between 0.7
and 1.3 in 31%, and larger than 1.3 in 37% of the calls; n = 40). However, the intensity of
the inspiratory pulse group was mostly lower than that of the expiratory pulse group.

![Figure 2. Sonogram and oscillogram of parts of a call series of *Discoglossus galiganoi* jeanneae from near Ronda (Malaga). Distinct intervals are spaced between calls, which consist of only one (inspiratory) pulse group.](image1)

![Figure 3. Sonogram and oscillogram of parts of a call series of *Discoglossus galiganoi* jeanneae from near Facinas. Only short intervals are spaced between calls. Calls consist of two pulse groups; in the two former calls it can be recognized that the first (inspiratory) pulse group has a longer duration and higher intensity than the second (inspiratory) pulse group.](image2)
as is typical for *galganoi*: ratio of pulse group intensities exp:insp. was smaller than 0.9 in only 10% of the cases, between 0.9 and 1.1 in 33%, larger than 1.1 in 57% (n = 24). Calls were inharmonious.

Discussion

Busack (1986) related his new species *jeanneae* with *D. pietus* from Morocco, whereas Lanza et al. (1986) considered it as subspecies of *D. galganoi*. Data of comparative cellular DNA content also grouped *jeanneae* clearly with *D. galganoi* (Fritz et al., 1994); however, the latter study had no material of *D. pietus scevarazi* available for comparison. The call analysis shows clear differences between *jeanneae* and *pictus scevarazi*. Mean call duration in *jeanneae* from the type locality near Facinas is nearly twice as long as in *pictus scevarazi*. Unfortunately calls recorded at different temperatures had to be included in the calculation of the mean value of *jeanneae* from the type locality due to a restricted number of recorded calls. But even considering the maximum possible error (all *jeanneae* calls recorded at 18°C, all *pictus scevarazi* calls recorded at 22°C) the temperature effect on the call duration would result in a 26.6% to 26.6% decrease (calculated after the regressions of Weber, 1974, for *D. pietus* calls), assuming the null hypothesis that both call durations would be identical under similar temperature conditions. The mean call duration of *D. g. jeanneae* was 394 ms, the mean call duration of *D. p. scevarazi* was 207 ms, thus 47.5% lower (versus about 26% expected by the null hypothesis, see above). We therefore conclude that in the calls of *jeanneae* are more similar to *galganoi* than to *pictus scevarazi* calls regarding call duration. This is further supported:

a) by the calls of the *jeanneae* specimen from near Ronda which are of similar duration to those of the Facinas specimen, and which were all recorded at 21°C;

b) by the fact that about 40 calls of the *jeanneae* specimen from Facinas which were recorded at 22°C are distinctly longer than *pictus scevarazi* calls to the human ear, although duration of several of these calls could not be exactly measured due to the noisy recording.

There are also some similarities between *pictus scevarazi* and *jeanneae* that could not be found in any *galganoi* population: the lack of distinct intervals between the calls of a call series, the lack of a clear duration difference between first and second pulse group, and possibly a somewhat lower mean call duration. However it must be stressed that the respective data for *jeanneae* refer to only two specimens, one of which was stimulated by hormones. Call recordings of more specimens from the type locality Facinas would allow to clarify if the call characteristics of the single recorded male are common in this population, or if they are due to the artificial recording conditions.

Also the call of the specimen from Ronda had a somewhat lower mean call duration than *galganoi* specimens from southern Spain, although most call characteristics of this specimen were very similar to those of northern *galganoi*.

It is apparent that the *D. galganoi* from southern Spain (*jeanneae*) show some bioacoustic differences compared with those from northern Spain (especially in call duration). It should be investigated whether these differences are due to a continuous line through Iberia, or due to a differentiated northern and southern group of populations. Nevertheless the bioacoustic data group the taxon *jeanneae* with *galganoi* rather than with *pictus* from northern Africa, what is supported by the data of cellular DNA content (Fritz et al., 1994) and genetic distances (Lanza et al., 1986). In our opinion this situation is best reflected by a subspecies status of the populations south of the Guadalquivir river as *D. galganoi jeanneae*.

Busack (1986) proposed a biogeographic hypothesis in which an ancestral *D. pictus-jeanneae* stock populated a landmass containing the present southern Iberia and northern Morocco during the lower Miocene, whereas the ancestral *D. galganoi* stock populated northern Iberia. During this period Atlantic waters were flowing to the Mediterranean through what is now the basin of Guadalquivir river, dividing the southern Iberia/Morocco landmass from northern Iberia. In the Pliocene the Guadalquivir basin was filled by sedimentation, and the Strait of Gibraltar was formed, dividing southern Iberia and Morocco (see Busack, 1986 for references). The formation of the Strait of Gibraltar, following Busack (1986), divided ancestral *D. pictus-jeanneae* populations into two populations which evolved to become *D. jeanneae* and *D. pietus*.

Busack's scenario, with a secondary contact between the differentiated species *D. jeanneae* and *D. galganoi*, is contradicted by electrophoretic data (Lanza et al., 1986), data on DNA content (Fritz et al., 1994), and the bioacoustic data presented in this study. All these data group *jeanneae* nearer to *D. galganoi* than to *D. pietus*.

On the other hand, some electrophoretic differences between *jeanneae* and *galganoi* do exist. Net's genetic distance between both taxa is 0.39 following Busack (1986) (based on comparison of 8 *jeanneae* specimens with only 1 *D. galganoi*), and 0.07 following Lanza et al. (1986). Morphological differentiation of *jeanneae* is rather high compared to *D. galganoi* but lower compared to *D. pietus* (Busack, 1986; Capula and Cort, 1992), and some call differences to *D. galganoi* from northern Spain are present (this study).

If discussing things in terms of Busack's scenario, also in an alternative explanation for these characteristics of *D. galganoi* from southern Spain is possible. Assuming that *D. pietus* and *D. galganoi* already diverged 9-10 million years ago, as suggested by alumin data (Maxson and Szymura, 1984), two differentiated *D. galganoi* species would have populated the landmasses today representing Iberia and northern Africa during lower Miocene. The ancestral stock of *D. pietus* inhabited the northern African/southern Iberia landmass, and the ancestral *D. galganoi* stock was distributed in northern Iberia.

On this basis it is possible that after the formation of the Strait of Gibraltar a part of the ancestral *D. pietus* population remained isolated in southern Iberia. The desiccation of the Guadalquivir Basin would have allowed the intrusion of ancestral *D. galganoi* into southern Iberia, which subsequently displaced the ancestral *D. pietus*. During this contact between the small remnant *D. pietus* populations and the invading large populations of
D. galganoi, hybridizations between both forms possibly occurred. Such a hypothetic past introgression of ancestral *pictus* alleles into the ancestral *galganoi* gene pool could be an explanation of the differentiation of the southern *galganoi* populations, today to be named *D. galganoi* jeneneae.

Acknowledgements. We wish to thank Gustav Peters, Wolfgang Walkowiak and Harald Lebisch, who made technical equipment available and helped in analyzing the calls, Mario Garcia-Peñalvo who helped collecting jeneneae specimens near the type locality, Fadma, Sergio Vences who made possible the travel to Centa.

References

Weber, E., Schneider, H. (1971): Artsspezifische Paarungsrufe bei *Discoglossus pictus* (Orch. 1837) und *Discoglos-

sus sarasinich Tschudi* 1837 (Discoglossidae, Amphibia, Z. Natuf. 268: 1055-1057.

Received: June 5, 1995. Accepted: May 5, 1996.