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Figure 8. Colour variation of U. giganteus from the Marojejy mountain massif in north-eastern Madagascar. Note the white spots on 
the head, shoulders, arms and flanks of the specimen D. Photos by the authors except D by H. P. Berghof.
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Figure 9. Variation in iris and buccal mucosa pigmentation of U. fimbriatus and U. giganteus. Row (A) Iris colouration in U. giganteus 
(from left to right): Marojejy and Montagne d’Ambre (last). Row (B) Iris colouration in U. fimbriatus (from left to right): Masoala, 
Nosy Mangabe, Nosy Mangabe, Amboriana, Marolambo, and Ambodiriana. Row (C) Colouration of the buccal mucosa in U. giganteus 
(from left to right): Marojejy and Montagne d’Ambre (last). Row (D) Colouration of the buccal mucosa in U. fimbriatus (from left to 
right): Amboriana, Ambodiriana, Marolambo, Nosy Mangabe, Masoala. Row (E) Detailed photographs of the head colouration of 
U. giganteus from Marojejy.
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two out of four nuclear genes (i.e., no RAG1 and KIAA1239 
haplotype sharing among specimens of either mtDNA 
clade). This suggests limited or absent gene flow among 
these units, even in areas where they occur in rather close 
proximity to one another, and thus provides a rationale for 
species delimitation under the genealogical concordance 
criterion (Avise & Ball 1990).

However, this taxonomic separation is less obvious than 
in many other Uroplatus taxa. As previously known from 
Uroplatus (e.g., Ratsoavina et al. 2012), the samples an-
alysed showed a high mitochondrial variability. Distance 
values of inter- and intra-species comparisons overlapped 
due to the high differences among locations within each 
clade. The geographic location of the basal split between 
the northern (U. giganteus) and southern (U. fimbriatus) 
clade along the northern boundaries of the Masoala Penin-
sula is apparently paralleled by a similar split into a north-
ern and southern clade within Uroplatus lineatus (Fig. 3 in 
Raxworthy et al. 2008) and in accordance with an iden-
tified area of high species turnover in reptiles by Brown 
et al. (2016). This also holds true for other geckos, such as 
the Phelsuma pusilla complex: in these small-bodied day 
geckos, Gehring et al. (2012) identified at least three inde-
pendent mitochondrial clades in Madagascar’s northeast-
ern coastal lowlands.

No obvious geographical signal was apparent in the 
mitochondrial or nuclear gene trees of U. fimbriatus, sug-
gesting a relatively recent expansion or ongoing gene flow. 
In contrast, U. giganteus showed a clear differentiation of 
samples from the Marojejy Massif to those from the north-
ernmost localities Forêt d’Ambre and Montagne d’Ambre, 
consistently among mitochondrial and nuclear genes. 
Whether this might suggest the existence of taxonomically 
separate units requires additional study. This genetic dif-
ferentiation may help to explain the pattern of geographic 
variation in colouration within U. giganteus. 

It is known that natural selection for crypsis plays an 
important role in the evolution of colour variation. As in 
other lizard groups, body colour pattern has been shown 
to have an adaptive basis (e.g., Leal & Fleishman 2002, 
Thorpe 2002, Rosenblum et al. 2004) and represents a 
compromise between selection for signalling functions 
(e.g., sexual signals, status or territorial signals, and spe-
cies recognition signals) and natural selection for defence 
against visually oriented predators (e.g., Endler 1978, 
Macedonia et al. 2002, Stuart-Fox & Ord 2004). Ac-
cording to this view, differences in colouration between 
species and populations or between sexes and age class-
es are the result of subtle differences in the balance be-
tween natural and sexual selection (e.g., Stuart-Fox & 
Ord 2004). However, we found no indication of consist-
ent differences in body colour or pattern among species, 
populations or sexes of the U. fimbriatus complex, besides 
the subtle differences of head colouration in U. giganteus 
populations from Montagne d’Ambre compared to those 
from Marojejy, already reported by Glaw et al. (2006). In-
dividuals from all populations in the U. fimbriatus com-
plex are obviously highly cryptic against their respective 

backgrounds in dorsal colouration, whereas hidden body 
regions are more or less uniform in both species and sex-
es, providing additional support for the role of natural se-
lection determining body colouration. Furthermore it has 
been suggested that colouration which visually matches a 
random sample of the background maximizes background 
matching (Merilata & Lind 2005). Therefore, natural se-
lection of the body colouration and pattern should favour 
a high variation within and among populations of U. fim-
briatus and U. giganteus, and thereby could explain the ab-
sence of specific patterns.

The observed higher chromatic variation in the Maro-
jejy population of U. giganteus compared to the Montagne 
d’Ambre population might be explained by the less isolated 
geographical situation of the Marojejy massif and potential 
gene flow with populations from neighbouring rainforest 
blocks. Alternatively, the two populations may respond to 
slightly different selective factors as natural selection may 
vary geographically due to differences in the habitat or the 
density and species composition of e.g., avian predators 
(Macedonia 2001, Macedonia et al. 2002). However, our 
data cannot discriminate if the differences reflect phyloge-
netic or adaptive variation, and it is possible that other fac-
tors such as genetic drift may be causal.

To conclude, our molecular data confirm a status for 
U.  fimbriatus and U. giganteus as different species. They 
correspond to independently evolving, allopatric lineages, 
with a probable contact zone on the central Masoala Pe-
ninsula. In external colouration, eye colour remains as the 
sole character to distinguish with some reliability among 
individuals of these two species, but future, more in-depth 
study of external morphology and osteology might reveal 
additional diagnostic characters.

Species of the genus Uroplatus are exported for the pet 
trade and are listed on Appendix II of the Convention on 
International Trade in Endangered Species (CITES). Uro-
platus giganteus is classified as Vulnerable (VU) on the 
IUCN Red List (Raxworthy et al. 2011). This large gecko 
has been illegally collected for the international pet trade 
in the past (Glaw et al. 2006), although no commercial 
trade has been reported in recent years (UNEP-WCMC 
2010); its current export quota is zero (www.cites.org). 
Though U. giganteus seems to be present in relatively high 
numbers in Montagne d’Ambre, its population is severe-
ly fragmented and it occupies a very small range (Glaw 
et al. 2006). The main threat that Uroplatus giganteus fac-
es is habitat destruction due to the logging of its lowland 
rainforest habitat for timber and clearance for agriculture 
(Glaw et al. 2006, Ratsoavina et al. 2013). Uroplatus fim-
briatus is classified as Least Concern (LC) on the IUCN 
Red List and is listed on Appendix II of CITES (Raxwor-
thy et al. 2011). There was formerly a quota of 2000 indi-
viduals per year set by CITES, which was reduced to 1000 
individuals in 2016 and 2017 (www.cites.org). However, the 
two species are occasionally confused, and according to 
our unpublished observations, specimens of U. giganteus 
listed as U. fimbriatus on export documents have entered 
the pet trade. Our study provides a means to assign most 
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individuals to species based on colour patterns, especially 
of the iris. Nevertheless, due to the uncertain taxonomic 
status of the Marojejy population of U. giganteus further 
research into the taxonomy, populations and geographical 
range is needed to be able to conserve and manage these 
unique geckos more effectively.
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