Convergent evolution of aposematic coloration in Neotropical poison frogs: a molecular phylogenetic perspective

Miguel Vences1,*, Joachim Kosuch2, Renaud Boistel3, Célio F. B. Haddad4, Enrique La Marca5, Stefan Lötters2, Michael Veith2

1 Institute for Biodiversity and Ecosystem Dynamics, Zoological Museum, University of Amsterdam, The Netherlands
2 Institute of Zoology, Department of Ecology, University of Mainz, Germany
3 Centre Scientifique d'Orsay, Laboratoires des Mécanismes de Communication, Université Paris Sud, Orsay Cedex, France
4 Departamento de Zoologia, Instituto de Bicicências, Universidade Estadual Paulista, Rio Claro, SP, Brasil
5 Laboratorio de Biogeografía, Escuela de Geografía, Universidad de Los Andes, Mérida, Venezuela

Received 15 November 2002 · Accepted 28 April 2003

Abstract

Poison frogs of the family Dendrobatidae contain cryptic as well as brightly colored, presumably aposematic species. The prevailing phylogenetic hypothesis assumes that the aposematic taxa form a monophyletic group while the cryptic species (Colostethus sensu lato) are basal and paraphyletic. Analysis of 86 dendrobatid sequences of a fragment of the 16S rRNA gene resulted in a much more complex scenario, with several clades that contained aposematic as well as cryptic taxa. Monophyly of the aposematic taxa was significantly rejected by SH-tests in an analysis with additional 12S and 16S rDNA fragments and reduced taxon sampling. The brightly colored Allobates femoralis and A. zaparo (Silverstone) comb. nov. (previously Epipedobates) belong in a clade with cryptic species of Colostethus. Additionally, Colostethus pratti was grouped with Epipedobates, and Colostethus bocagel with Cryptophyllobates. In several cases, the aposematic species have general distributions similar to those of their non-aposematic sister groups, indicating multiple instances of regional radiations in which some taxa independently acquired bright color. From a classificatory point of view, it is relevant that the type species of Minyobates, M. steyermarki, resulted as the sister group of the genus Dendrobates, and that species of Mannophryne and Nephelobates formed monophyletic clades, corroborating the validity of these genera. Leptodactylids of the genera Hylodes and Crossodactylus were not unambiguously identified as the sister group of the Dendrobatidae; these were monophyletic in all analyses and probably originated early in the radiation of Neotropical hyloid frogs.

Key words: Amphibia, Dendrobatidae, Hylodinae, aposematic color, skin toxins, phylogeny

See also Electronic Supplement at http://www.senckenberg.de/odes/03-13.htm

Introduction

Anuran amphibians are organisms well suited for studies of vertebrate evolutionary patterns. Among other aspects (e.g. extraordinary diversity in species numbers and reproductive modes), they display a high degree of morphological convergence. In discussions of the origin of conspicuous color patterns, of high toxicity, complex social and territorial behaviour, or brood care, Neotropical poison frogs (Dendrobatidae) have long been in the center of interest.

Recent molecular studies (e.g. Summers et al. 1997, 1999; Clough & Summers 2000; Vences et al. 2000) and behavioural studies (e.g. Toft 1995; Caldwell 1996, 1997; Vences et al. 1998; Summers & Clough 2001) allow for some general conclusions concerning dendrobatid relationships: (i) monophyly of the family is highly probable as a member of the hyloid lineage within the Neobatrachia, although (ii) the sister group of the Dendrobatidae remains unidentified; (iii) the presence of skin alkaloids in correlation with bright (aposematic) colors may have evolved in parallel lineages, but (iv)
highly potent alkaloids occur in one clade (genera *Dendrobates* and *Phyllobates*) only; (v) only limited convergence or reversal prevailed in the evolution of some highly derived behavioural traits (e.g., microphagy, female egg attendance, use of phytotelmata as pools for tadpole development, pair bonding). However, how reliable is our knowledge? Of the approximately 200 known species in the family (Glaw et al. 1998) comparatively few have been used in phylogenetic reconstructions. Primarily, these are the brightly colored taxa of the genera *Allobates*, *Cryptophyllobates*, *Dendrobates*, *Epipedobates*, and *Phyllobates*. Other groups have been considered peripherally or not at all in molecular studies. These include *Colostethus* sensu lato (i.e., approximately half of the dendrobatid species), for which nine species groups have been suggested by Rivero & Serna (1989) and Rivero (1990), and the proposed genera *Aromobates*, *Mannophryne*, and *Nephelobates* (the latter of which were taken out of *Colostethus* sensu lato by La Marca 1992, 1994). The majority of these frogs are cryptically colored and considered to be more ‘primitive’ within the dendrobatid tree (Myers et al. 1991, Caldwell 1996, Vences et al. 1998). Our knowledge of their life histories and toxicities generally is poor. Nevertheless, it has been documented that some of these ‘primitive’ forms show highly derived characters, as there are (i) *Colostethus stepheni* which has nicolous tadpoles (Juncá et al. 1994); (ii) *C. degranvillei* in which larvae develop to froglets on the dorsum of a parent (Les-cure 1984); (iii) *C. inguinalis* which contains a highly potent tetrodotoxin (Daly et al. 1994a); (iv) *C. beebei* which breeds in phytotelmata (Bourne et al. 2001); and some *Colostethus* species that undoubtedly possess aposematic colors (e.g. *C. nexpus*; Coloma 1995).

Such indications of multiple evolution of toxicity and aposematism correspond well with the general pattern among the Anura. Water-soluble alkaloid toxins accumulate in frogs after uptake from arthropod prey (Daly et al. 1994b), a mechanism which appears to have been acquired independently by dendrobatids, Malagasy poison frogs (*genus Mantella*, family Mantellidae), Australian toadlets (*genus Pseudophryne*, family Myobatrachidae) and South American toads (*genus Melanophryniscus*, family Bufonidae) (Daly et al. 1987, 1996). These and several other unrelated frog lineages independently evolved conspicuous colorations that can be considered as aposematic (Duellman & Trueb 1986, Lötters & Vences 1998). Interestingly, in both *Mantella* and in *Dendrobates* the aposematic pattern itself is subject to parallelism, probably caused by Müllerian mimicry selection (Symula et al. 2001, Schaefer et al. 2002).

When trying to elucidate these fascinating phenomena, incomplete taxon sampling has the potential of causing severe problems in phylogenetic analysis. Under-representation of ‘primitive’ dendrobatids may lead to equivocal or incorrect scenarios of character evolution if some key taxa are missing that actually are more closely related to the ‘derived’ species than others. Recently, simulation studies (Zwickl & Hillis 2002) illustrated that increased sampling of taxa is one of the most important ways to increase overall phylogenetic accuracy. It also helps to avoid problems with accumulated autapomorphies in few single lineages (‘long-branch attraction’; see Hillis 1996, Wiens & Hollingsworth 2000).

Herein, we reanalyze the published molecular data for poison frogs and complement these with sequences of 37 additional dendrobatid samples. These belong to *Colostethus* sensu lato involving species groups II, IV, VI, VII (i.e. *Mannophryne* of La Marca 1992), VIII (i.e. *Nephelobates* of La Marca 1994 in part; La Marca 1985) and IX (Rivero & Serna 1989; Rivero 1990), plus several species that have not been allocated to species groups (*C. baeobatrachus*, *C. bocagei*, *C. humilis*, *C. stepheni*).

We also provide the first molecular data on the hyloidine (sensu Frost 1985) genera *Hyloides* and *Crossodactylus* (family Leptodactylidae), which have been suggested to represent potential sister groups of the Dendrobatidae within the Hyloidea (Lynch 1971, 1973). We use the resulting cladograms to draw hypotheses on the evolution of aposematism and toxicity in poison frogs.

Materials and methods

Selection of gene fragments

To get an overview of phylogenetic relationships among poison frogs, we selected a fragment of the 16S rRNA gene (approximately 540 base pairs) which has been used in most previous molecular studies that included dendrobatids (e.g. Ruinskiy & Maxson 1996, Vences et al. 2000, Clough & Summers 2000). Thus, a large number of sequences of this fragment was available and could readily be combined with the newly obtained data to the largest data set so far analysed in hyloid frogs (i.e. about 100 sequences). Because the 16S rRNA gene is known to be informative regarding dendrobatid relationships, and previous cladograms based entirely on this fragment (Vences et al. 2000) corresponded well with a cladogram obtained by combination of three genes (*Colostethus* 2000), we used the complete set of available 16S rDNA sequences for a first identification of major dendrobatid clades.

To find higher support for the non-monophyly of aposematic and non-aposmetic dendrobatids, we sequenced additional 16S rDNA and 12S rDNA fragments (approximately 510 and 360 base pairs, respectively) from representatives of the major dendrobatid clades (Table 1) as identified in the initial 16S rDNA survey.

DNA extraction, amplification and sequencing

DNA was extracted using QIAamp tissue extraction kits (Qiagen) from tissue samples (hindleg muscle, either fresh or pre-
Table 1. Major clades of cryptic dendrobatids identified by our analysis (undescribed and unidentified species not listed). Clades 1–4 of Colostethus are named in accordance with Fig. 1. Only species for which genetic data are available are included.

<table>
<thead>
<tr>
<th>Name of lineage</th>
<th>Species included</th>
<th>Probable sister group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colostethus clade 1</td>
<td>C. humilis, C. marchesianus, C. talamancea, C. trilineatus</td>
<td>Allobates</td>
</tr>
<tr>
<td>Colostethus clade 2</td>
<td>C. baebatrachus, C. degranvillei, C. palmatus, C. stepheni</td>
<td>M annophyne + Nepheleobates</td>
</tr>
<tr>
<td>Colostethus clade 3</td>
<td>C. pratti</td>
<td>Epipedobates (W Andean clade)</td>
</tr>
<tr>
<td>Colostethus clade 4</td>
<td>C. bocagei, C. subpunctatus</td>
<td>Cryptophyllobates?</td>
</tr>
<tr>
<td>Mannophyne</td>
<td>M. collaris, M. herminae</td>
<td>Nepheleobates</td>
</tr>
<tr>
<td>Nepheleobates</td>
<td>N. molinarii</td>
<td>Mannophyne</td>
</tr>
</tbody>
</table>

erved in 98% EtOH. We used the primers 16Sar-L (light chain; 5'-CGC CTG TTT ATC AAA AAC AT-3') and 16Sbr-H (heavy chain; 5'-CCG GTG TGA ACT CAG ATC ACG T-3') of Palumbi et al. (1991) to amplify a portion of the 16S ribosomal RNA gene in all samples available (in the following referred to as 16S). We used the primers 16SLL3 (light chain; AGC AAA GAH YWW ACC TCG TAC CTT TTG CA T) and 16S LA-H (heavy chain; reverse of 16Sar-L) to amplify an additional section of the mitochondrial 16S ribosomal RNA gene (in the following referred to as 16S-B); and the primers 12SA- L (light chain; 5'-AAA CTG GGA TTA GA T ACC CCA CTA T-3') and 12SB-H (heavy chain; 5'-GAG GGT GAC GGG CGG TGT GT-3') to amplify a section of the mitochondrial 12S ribosomal RNA gene. PCR protocols for the 16S fragments were as follows. Initial denaturation step: 90 s at 94 °C; 33 cycles: denaturation 45 s at 94 °C, primer annealing for 45 s at 55 °C, extension for 90 s at 72 °C. PCR protocol for the 12S fragment was as follows. 35 cycles: denaturation 45 s at 94 °C, primer annealing for 60 s at 50 °C, extension for 120 s at 74 °C. PCR products were purified using QIAquick purification kits (Qiagen). We sequenced single-stranded fragments using an automatic sequencer (ABI 377). Voucher specimens (if maintained) and GenBank accession numbers of all sequences used for analysis are given in an Organisms Diversity and Evolution Electronic Supplement (http://www.senckenberg.de/odes/03-13.htm, Part 1). New sequences received the accession numbers AY263212-AY263269.

Data analysis

Sequences were aligned using the clustal option in the program Sequence Navigator (Applied Biosystems). A correct alignment of complete ribosomal RNA gene sequences should take into account any secondary structures (Kjer 1995). Considering the high number of taxa involved in our alignment, and the considerable uncertainties of alignment of hypervariable regions, we preferred instead a strongly conservative approach which excluded all regions of the gene fragments that could not be clearly aligned among all taxa, as recommended by Swoford et al. (1996). All positions with gaps in one or more taxa were excluded as well. Altogether, more that 30% of the positions from the 16S alignment were excluded (original sequence lengths were between 520 and 540 bp), and a similar percentage was excluded from the 12S and 16S-B alignments in the reduced set of taxa. Preliminary analyses that included the complete sequences and coded gaps either as missing data or as fifth character states yielded phylogenetic trees with topologies very similar to those described herein. This indicates that the excluded hypervariable regions bear only limited additional phylogenetic information, and justifies their exclusion.

Prior to phylogenetic analysis, we performed hierarchical likelihood ratio tests to evaluate which substitution model fits our data best. We used Modeltest (Posada & Crandall 1998), version 3.06, in combination with PAUP*, version 4b8. Phylogenetic analyses were carried out with PAUP*, version 4b10 (Swoford 2002). Heuristic searches were done under Maximum Likelihood (ML) and Maximum Parsimony (MP), using tree-bisection-reconnection (TBR) branch swapping, and random addition sequences with ten replicates. Bootstrap values (Felsenstein 1985) and Bayesian posterior probabilities were calculated to assess the robustness of topologies. Two thousand full heuristic bootstrap replicates were calculated using Neighbor-Joining and the substitution models suggested by Modeltest in both data sets, while only 100 ML replicates could be calculated for the combined data set because of computational restrictions.

In the Bayesian analysis, we ran 500,000 generations, sampling every tenth tree, using MrBayes software, version 2.01 (Huelsenbeck & Ronquist 2001). Since Modeltest had suggested complex substitution models, we used the following settings in MrBayes: Nst = 6, rates = invgamma, basefreq = estimate (the GTR+I+G model). Based on empirical evaluation we set burn-in (the initial set of generations preceding convergence on stable likelihood values) at 50,000 generations in the 16S rRNA data set, and at 10,000 in the combined data set.

For the testing of multiple alternative topologies we used the Shimodaira-Hasegawa-test (SH-test; Shimodaira & Hasegawa 1999) as implemented in PAUP* (settings: full optimisation; 1,000 bootstrap replicates) which is the only non-parametric method currently considered as applicable to such problems under the ML optimality criterion (Whelan et al. 2001).

Results

For the 16S rDNA data set (368 bp after exclusion of hypervariable regions), the hierarchical likelihood ratio tests in Modeltest selected a GTR+I+G substitution.
model ($-\ln L = 5072.91$) with empirical base frequencies (freqA = 0.3442; freqC = 0.1897; freqG = 0.1995; freqT = 0.2666) and substitution rates ([A–C] = 3.0193; [A–G] = 5.1240; [A–T] = 4.0070; [C–G] = 0.4068; [C–T] = 26.4920; [G–T] = 1), a proportion of invariable sites of 0.2915, and a gamma distribution shape parameter of 0.4767. Maximum likelihood heuristic searches recovered four trees with the same highest likelihood score. These differed only in single aspects of the arrangement of terminal conspecific sequences. One of these trees is shown in Fig. 1.

For the combined 16S and 12S rDNA data set (1,084 bp after exclusion of hypervariable regions), the hierarchical likelihood ratio tests in Modeltest selected a TrN+I+G substitution model with empirical base frequencies (freqA = 0.3946; freqC = 0.2080; freqG = 0.1422; freqT = 0.2552) and substitution rates ([A–G] = 2.8980; [C–G] = 6.2197; all other rates = 1), a proportion of invariable sites of 0.2479, and a gamma distribution shape parameter of 0.4110. Maximum likelihood analysis identified a single best tree ($-\ln L = 7619.5$; Fig. 2). MP analysis identified two most parsimonious trees (1,471 steps; consistency index 0.51; retention index 0.37). These were largely in agreement with the ML tree which needed 1,485 steps under the MP optimality criterion (consistency index 0.51; retention index 0.36). The strict consensus of the MP trees differed in the arrangement of the outgroups (Leptodactylus was the most basal leptodactylid) and was ambiguous regarding the sister-group relationship of Cryptophyllobates azureiventris and Cologstethus bocagei. However, most of the relevant placements, such as those of C. bocagei among the aposematic species, of Allobates femoralis sister to Colostethus talamancae, of Colostethus pratti sister to Epipedobates trivittatus, and of Hylodes sister to the dendrobatids, were also recovered by the MP searches.

Bootstrapping values and Bayesian posterior probabilities coincided in defining several clades which were already indicated by the more inclusive analysis based on 16S rDNA sequences only. The positions of Colostethus pratti as sister group of Epipedobates and of C. talamancae as sister group of Allobates were strongly confirmed (bootstrap values >75%, maximum posterior probabilities = 100%), while the position of Colostethus bocagei and Cryptophyllobates was not supported by relevant scores. Dendrobatids clearly were monophyletic (bootstrap values >95%, posterior probability = 100%). The genus Hylodes was identified as their sister group, but this grouping received no relevant support.

SH-tests significantly rejected all tested variants of the ‘classic’, currently accepted dendrobatid phylogeny (e.g. Myers et al. 1991) in which all cryptic species were arranged basally in the tree and the aposematic species (including Allobates femoralis) formed a monophyletic group (P < 0.01). Also, alternative trees with modified positions of this species (remaining topology kept equal) were significantly rejected (P ≤ 0.05). In contrast, other variants with modified positions of Cryptophyllobates azureiventris, Colostethus bocagei, Epipedobates trivittatus, or Colostethus pratti were not significantly rejected in most cases (see Electr. Suppl. 03-13, Parts 2 and 3, for alternative topologies tested and likelihood values). MP searches carried out by constraining monophyly of the aposematic dendrobatids resulted in 44 trees with a tree length of 1,528 steps, thus 57 steps more than the most parsimonious tree, and 43 steps more than the ML tree.

Discussion

Combinability of sequences

In this study, we assembled the most comprehensive dataset of dendrobatid sequences thus far, obtained by different working groups (e.g. Ruvinsky & Maxson 1996, Clough & Summers 2000, Vences et al. 2000). For 13 taxa (Allobates femoralis, Colostethus pratti, C. talamancae, Epipedobates trivittatus, Cryptophyllobates azureiventris, Dendrobatides auratus, D. tinctorius, D. leucomelas, D. pumilio, D. sylvaticus, D. ventrimaculatus, Phyllobates lugubris, and P. vittatus), sequences we generated were available in addition to those of other research teams (see Electr. Suppl. 03-13, Part 1). Combining them, seven were placed as monophyletic units by our analysis, while all others clustered very close to
each other (Fig. 1). In some cases (Dendrobates ventrimaculatus, D. tinctorius) these paraphyletic arrangements may have been caused by intraspecific variation. In other cases (species of Phyllobates, Colostethus pratii) the differences probably are more the result of different sequencing qualities and subsequent erroneous scoring of single positions in some sequences. This highlights that caution must be applied when comparing haplotypes from different sources at the population level (cf. Harris 2001). Nevertheless, none of the observed ambiguities resulted in alternative placements of conspecific specimens in different major dendrobatid lineages, confirming that it is possible to combine these different datasets for higher-level analyses.

Taxonomic implications

Our data indicate that dendrobatid taxonomy and classification at the species level are far from settled. Our samples show that some forms comprise genetically highly divergent taxa (Fig. 1) that, in our opinion, represent undescribed species (i.e. Colostethus sp. aff. baebatrachus and C. sp. aff. marchesianus A and B, Epipedobates sp. Bolivia, Mannophryne sp. A and B, Nephelobates sp. A and B). In addition, in two cases our data indicate relatively high divergences between populations from the Guianan region and the upper Amazon basin which so far were considered conspecific. Total pairwise divergence in the 16S rDNA fragment (including hypervariable regions) between Peruvian and French Guianan specimens were 4% (21 substitutions) in Dendrobates ventrimaculatus, and 3% (16 substitutions) in Epipedobates cf. hahneli.

Dendrobates galactonotus has been suggested to be closely related to D. tinctorius by Silverstone (1975) based on morphological resemblance. Surprisingly, the 16S phylogeny (Fig. 1) placed D. galactonotus as more related to sympatric D. castaneoticus and D. quinquevit-
Our data contribute significantly to the understanding of generic relationships within Dendrobatidae. By confirming that Cryptophyllobates azureiventris does not belong in a lineage with Epipedobates or Phyllobates, our data corroborate the validity of the genus Cryptophyllobates, recently erected for Phyllobates azureiventris Kneller & Henle, 1985 (Lötters et al. 2000). Moreover, validity of the genera Mannophryne and Nephelobates as suggested by La Marca (1992, 1994) is strongly supported. The isolated position of Minyobates steyermarki (type species of the genus Minyobates) at the basis of Dendrobates is surprising as well. The genus Minyobates was created for an assemblage of aposematic dwarf dendrobatids assumed to have cephalic amplexus (versus absent in Phyllobates and Dendrobates), based on observations in M. steyermarki by Myers (1987). Subsequent behavioural (Jungfer et al. 1996) and molecular observations (Clough & Summers 2000, Vences et al. 2000) led to the transfer of the species D. fulguritus and D. minutus from Minyobates to Dendrobates and thus cast doubts on the validity of Minyobates. The isolated phylogenetic position of M. steyermarki, which occurs in a remote area of the Venezuelan table mountains, qualifies it as a key species to understand the evolution of derived mating systems among dendrobatids, and re-inforces the validity of the genus Minyobates (which may be monotypic).

The identification of several well-defined groups in Epipedobates and Colostethus and the high degree of paraphyly characterizing these genera invoke the need for further partitioning, with the well-defined lineages (in part coinciding with species groups proposed by previous authors; Silverstone 1976, Rivero 1990) as generic units. However, we suggest waiting for genetic data on several crucial species, e.g. on the type species of Colostethus (C. latinasus) and its junior synonyms Hyloclisis (type species C. fuliginosus) and Prostherapis (C. inguinalis) (see Dubois 1981, Myers et al. 1991), and on the enigmatic Aromobates nocturnus, before changing the classification of these frogs.

Sister group of the Dendrobatidae

Our analysis strongly corroborated that aposematic and cryptic dendrobatids together form a monophyletic group. However, as in previous studies (Ruvinsky & Maxon 1996, Vences et al. 2000), our data failed to resolve the position of this clade among hyloid frogs. We included, for the first time, representatives of all lepto-dactylid subfamilies (i.e. Ceratophryninae, Hylocidinae, Leptodactylinae, Telmatobinae). The combined tree (Fig. 2) placed Hylodes as sister group of the dendrobatids, but this placement received no support from bootstrapping or Bayesian analysis. In the preliminary exploration using the 16S rDNA data set, the two available hylodines, Crossodactylus and Hylodes, were not combined as sister taxa. This certainly is an artefact of the relatively few informative positions, but it highlights that these two genera are significantly differentiated. Hylodines share several osteological characters with the Dendrobatidae (Lynch 1971). They are small to medium-sized, diurnal, stream-breeding frogs with complex optical communication systems (Hödl & Amezquita 2001), phenetically similar to cryptic poison frogs. Whether this or another lineage may constitute the sister group of dendrobatids, it seems clear that the latter originated early within the initial hyloid radiation (Ruvinsky & Maxson 1996), showing relatively deep divergences to all other hyloid subgroups.

Multiple evolution of bright color and regional clades

Our results indicate several cases of convergence or reversal with respect to bright color in dendrobatids (Fig. 3). The ‘classic’ hypotheses, with basal positions of Aromobates, Colostethus sensu lato, Mannophryne and Nephelobates and an arrangement of the bright colored taxa in one monophyletic lineage (e.g. Myers et al. 1991, Kaplan 1997), was significantly rejected by the SH-tests. Unfortunately, the alkaloid content of several crucial taxa has not been assessed yet (Fig. 2), and therefore it can only be hypothesized that the bright color is in all instances an aposematic signal related to toxicity.

According to our trees, Allobates (brightly colored) is clearly nested within one clade of Colostethus sensu lato (generally cryptic; Edwards 1974, Coloma 1995), Colostethus pratti (cryptic; Edwards 1974) is placed as the sister group of one clade of Epipedobates sensu lato (generally aposematic). And Colostethus bocagei and C. subpunctatus (both cryptic; Edwards 1974) appear to be related to Cryptophyllobates (brightly colored). However, the quality of the available evidence differs among these examples.

The best-documented case is the positioning of Allobates within a Colostethus lineage (containing C. humilis, C. marchesianus, C. talamancae, and C. trilineatus; Fig. 1). Alternative placements of Allobates were significantly rejected by SH-tests. Some populations of A. femoralis are not brightly colored but the majority is,
Fig. 3. Examples of live coloration of aposematic and non-aposematic dendrobatid frogs from distinct clades (Table 1, Fig. 1) identified through our analysis, and geographic distribution of all species from the respective clusters for which genetic data were available (undescribed and unidentified species not considered). In the distribution maps, red color marks areas of aposematic species, grey those of cryptic species. A. Cryptophyllobates and Colostethus clade 4: A1 Cryptophyllobates azureiventris; A2 Colostethus bocagei. B. Epipedobates (from west of the Andes) and Colostethus clade 3: B1 Epipedobates tricolor; B2 Colostethus pratti. C. Allobates and Colostethus clade 1: C1 Allobates zaparo; C2 Colostethus humilis. D. Mannophryne, Nephelobates and Colostethus clade 2: D1 Mannophryne herminiae; D2 Nephelobates molinarii. Distribution areas are given for the following species: 1 Colostethus subpunctatus; 2 Colostethus bocagei; 3 Cryptophyllobates azureiventris; 4 Colostethus pratti; 5 Epipedobates boulengeri; 6 E. tricolor and E. anthonyi; 7 Allobates femoralis; 8 A. zaparo; 9 Colostethus talamancae; 10 C. trilineatus; 11 C. humilis; 12 C. marchesianus; 13 Mannophryne and Nephelobates; 14 Colostethus palmatus; 15 C. stepheni; 16 C. baebatrachus and C. degranvillei. Distributional information is based on Silverstone (1975, 1976), Schulte (1999), De la Riva et al. (2000), Lescure & Marty (2001), Lima & Caldwell (2001), Caldwell et al. (2002), Caldwell & Lima (2003), and the Amphibian Species of the World database (http://research.amnh.org/herpetology/amphibia/) as of October 2002. Photographs by K.-H. Jungfer (A1, B1, B2, C1), M. Read (A2), and M. Vences (C2, D1, D2).
having a light yellow or gold labial, dorsolateral, and ventrolateral stripes, and bright yellow or red axillary and inguinal spots (Silverstone 1976). Also *Allobates zaparo* (Silverstone, 1976) comb. nov. (here transferred from *Epipedobates*) clearly is aposematic with a bright reddish dorsum (Jungfer 1989). Traces of skin alkaloids have been found in one population of *A. femoralis* (see Daly et al. 1987). *A. zaparo* has not been tested (J.W. Daly, pers. comm.). As *Allobates* is deeply nested among other cryptic species (Fig. 1), the most parsimonious explanation is that they acquired their brightness independently from species of *Epipedobates*, some of which have similar patterns (Jungfer 1989). The distinctive karyotype of *Allobates femoralis* (Aguiar-Jr. et al. 2002) and the structure of its spermatozoa (Aguiar-Jr. et al. 2003) also favour a relationship with species of *Colostethus* rather than those of *Epipedobates*.

Batesian mimicry has been invoked to explain the similarity between the non-toxic *Eleutherodactylus gaigeae* (family Leptodactylidae) from Central America and a highly toxic sympatric species, *Phyllobates lugubris* (see Myers & Daly 1983). Considering recent indications for mimicry phenomena in frogs (Symula et al. 2001, Schaefer et al. 2002), it might be worth testing if similar explanations could be invoked for *Allobates* and sympatric Amazonian *Epipedobates* species (Jungfer 1989), although *Allobates femoralis* has been thought of as the model for a non-toxic mimic leptodactylid frog, *Liothytes lineatus* (see Nelson & Miller 1971).

In *Colostethus pratti*, the shanks are orange and the venter is yellowish, but in general the coloration is cryptic and much more similar to most other *Colostethus* than to the brightly colored species of *Epipedobates* with which it clusters (Fig. 1), and which generally have light dorsolateral lines (absent in a few species only) and/or reddish dorsum and/or bright axillar, inguinal and/or calf spots. Nevertheless, the pattern alone (i.e. dorsolateral lines) of *C. pratti* and *E. anthonyi* and *E. tricolor* (but not *E. boulengeri*) is similar, and *E. tricolor* is extremely variable in coloration (Edwards 1974, Silverstone 1976). Moreover, it might be relevant that this placement correlates relatively well with geographic distributions of the lineages involved, and of one morphological character (presence of a swollen third finger in males) thought to be phylogenetically informative in dendrobatids (e.g. Myers et al. 1991, but see Coloma 1995). This character is shared, on the one hand, by a large number of *Colostethus* species (Coloma 1995) including *C. pratti* and at least 11 other species of the genus (i.e. *Colostethus* sensu stricto because the type species, *C. latinasus*, is involved; group IV of Rivero 1990). On the other hand, several *Epipedobates* (*E. tricolor*, *E. boulengeri*, *E. espinosai*, and *E. anthonyi*) also have this character (Myers 1991). The latter are representatives of their genus from west of the Andes only (we lack information for the two other *Epipedobates* species that occur west of the Andes, *E. andinus* and *E. erythromos*). Three of these, for which data are available, form a monophyletic lineage to the exclusion of other *Epipedobates* (Fig. 1). Nine out of the 12 *Colostethus* having a swollen third finger in males (including *C. pratti* which clusters with the three *Epipedobates* species mentioned; Fig. 1) occur in this area as well (Rivero 1990, Coloma 1995). It is therefore tempting to hypothesize that the western Andean *Epipedobates* (including the type species *E. tricolor*) arose out of a western Andean *Colostethus* cluster with which they still share the swollen third finger apomorphy. In this scenario, the ancestor of the radiation of *Epipedobates* from east of the Andes (for which the name *Phobobates* would become available in the case of generic splitting; Zimmermann & Zimmermann 1988) acquired bright coloration independently from the western Andean species. However, this hypothesis remains tentative because (i) alternative positions of *Colostethus pratti* could not be significantly excluded, (ii) *C. pratti* was the only *Colostethus* from west of the Andes included in our analysis, and (iii) at least one species with a swollen third finger in males (i.e., *C. stephani* from the Amazon basin) is unrelated to *Epipedobates* (Fig. 1), demonstrating the occurrence of convergence or reversal also in this morphological character (Grant et al. 1997).

The least supported example for convergence in bright color evolution regards *Colostethus bocagei* and *C. subpunctatus*. As in previous analyses (Vences et al. 2000), the position of *C. bocagei* was not well resolved. This species was placed close to *Cryptophyllobates azureiventris* (Figs. 1, 2), a further enigmatic species formerly included in *Epipedobates* and now removed from it (Lötters et al. 2000). *Colostethus subpunctatus* has distinct orange color on the ventral limb surfaces, but both *C. bocagei* and *C. subpunctatus* clearly have a cryptic brownish dorsal surface (Edwards 1974) as opposed to the light yellow or orange labial, dorsolateral and lateral lines of *Cryptophyllobates*. Again, it is conspicuous that these taxa show little resemblance in coloration but occur in largely the same general area, namely the Amazonian (eastern) versant of the Andes or within the Cordillera Oriental (C. *subpunctatus*). However, their position must be considered as unresolved, as indicated by the low bootstrap values supporting their placement and the extremely small differences in log-likelihood scores of alternative topologies.

Beside the three *Colostethus* lineages discussed in the previous paragraphs (*C. pratti*, *C. bocagei/subpunctatus*; *C. humilis/marchesianus/talamancae/trilineatus*), our analysis supports another major clade in this (clearly paraphyletic) genus. It comprises *C. baebatrachus*, *C. degranvillei*, *C. palmatus* and *C. stephani*. The mem-
bers of this clade, which are distributed in the northern arc of South America, are extraordinary in several respects. *Colostethus degranvillei* and *C. stephensi*, which are placed as sister species, show unique, derived reproductive modes with endotrophic tadpoles (Lescure 1984, Juncá et al. 1994). *Colostethus palma tus* also has been hypothesized to exhibit complex behavioural patterns and to be the possible sister group of *Mannophryne* (La Marca 1995).

In the future, more comprehensive analyses may reveal more large clades of non-aposematic dendrobatids, restricted to particular regions. In the Venezuelan Andes, Myers et al. (1991) described a large nocturnal dendrobatid as a new genus, *Aromobates*, but other relatively large taxa from this area (e.g. *Colostethus leop ardalis*) may have affinities to this species as well (Mijares-Urrutia 1991; authors’ pers. observ.). Also, our analysis did not include any species of the *Colostethus* groups I (from the northern and central Andes), III (from the lower Amazon basin and the Atlantic forests of Brazil) or V (from the Cordillera Oriental of Colombia), nor additional taxa not allocated to any species group (Rivero 1990). These may prove to constitute further geographically distinct monophyletic radiations.

The examples discussed herein suggest a strong biogeographic component in dendrobatid evolution. The Amazonian basin is likely to be a major reservoir of dendrobatid lineages, several of which seem to have dispersed out of this region into Central America (e.g. *Colostethus sensu stricto*, *Dendrobates*) or into the Andes (e.g. *Colostethus humilis*; La Marca et al. in press). However, the Andes especially have played a major role, with some lineages evolving west or east of this mountain massif (e.g. *Epipedobates*/*Colostethus*) or with their diversity center in the higher altitudes of the Andes themselves (e.g. *Mannophryne*, *Nephelobates*). It is likely that the separate evolution of these lineages was initiated by vicariant processes. Apparently, several of these lineages that radiated in geographic isolation gave independent rise to clades with bright color patterns and probably with skin alkaloids.

The evidence from our trees makes multiple (parallel) evolution of these chromatic specializations more likely than their loss in some lineages. Taking the example with highest statistical support, the generally brightly colored *Allobates* is nested among cryptic forms. A reversal hypothesis implies multiple loss of bright color and is thereby less parsimonious than the assumption that its acquisition in *Allobates* occurred independently from other aposematic lineages. Similar arguments can be used in the case of *Cryptophyllobates*, although the phylogeny is not well supported in this case. In *Epipedobates*, a basal acquisition of bright color and its loss in *Colostethus pratti* is as parsimonious (two steps) as its independent acquisition in the two regional *Epipedobates* radiations (east and west of the Andes). We did not identify any example of cryptic species nested among aposematic species that would unambiguously indicate a reversal.

Similar to all alkaloid-bearing aposematic anurans but unlike most other frogs, cryptic dendrobatids are diurnal with only few exceptions (Myers et al. 1991; Vences et al. 1998; authors’ pers. observ.). Diurnality is crucial for the evolution of aposematism which is directed against optically-oriented diurnal predators, and a similar rationale applies if the bright color of some dendrobatids is related to intraspecific communication rather than the warning of predators (Lima & Caldwell 2001). Therefore, ancestral diurnality may have been an important predisposition for the multiple (parallel) evolution of aposematic color in several regional radiations of the Dendrobatidae.

Acknowledgements

We are grateful to J.-C. Baloup, M. Blanc, F. Catzeflis, P. Charles-Dominique, J. W. Daly, P. Gaucher, K. Hauck, K.-H. Jungfer, M. Kneller, H. Lüddecke and J. C. de Massary, who supplied tissue samples or unpublished data. M. Read kindly allowed use of his picture of *Colostethus bocagei*. S. Lochon kindly assisted in obtaining collecting and export permits. The Universidad de lo Andes, Instituto de Geografía y Conservación de los Recursos Naturales, Mérida, provided logistic support for our collecting trips in Venezuela. C. F. B. Had- dad is grateful to CNPq for a research fellowship.

References

Multiple evolution of aposematism in poison frogs

