(1979, op. cit.) describes C. c. curvatum being attracted to carrion by odor, and this might be the cue for C. n. nubila as well.

On another occasion, while monitoring active bird nests at the Naval Base, one of us (MAH) observed an iguana scavenge on the decaying remains of a nesting white-winged dove, Z. asiaticus, which had fallen out of its nest and died several days prior. In addition, researchers using mist nets to capture birds for a banding study at the Naval Base reported observations to us suggesting that iguanas might occasionally take small birds, such as Cuban grackles (Quiscalus niger) captured in nets.

These observations of C. n. nubila, combined with reports by Iversen (1979, op. cit.) for C. c. curvatum, suggest that probably all Ceyxus are opportunistic scavengers of vertebrate remains. In contrast, there is no evidence that Ceyxus prey on living vertebrates under natural conditions. In fact, some Ceyxus populations co-occur with dense concentrations of breeding seabirds; e.g., C. c. curvatum with briddled terns (Sterna anaethetus) and brown noddy (Anous stolidus) on small cays in the Turks and Caicos Islands, and C. n. curvatum with red-footed boobys (Sula sula) and magnificent frigatebirds (Fregata magnificens) on Little Cayman Island. There is no indication that iguanas actively prey on the eggs or nestlings of these birds (OPL, pers. obs.).

Submitted by GLENN P. GERBER, TANDORA D. GRANT, and ALLISON C. ALBERTS, Division of Ecology and Applied Conservation, Center for Reproduction of Endangered Species, P.O. Box 12055, Zoological Society of San Diego, San Diego, California 92132-0551, USA, and MAGGIE A. HOSTETTER, The Institute for Bird Populations, P.O. Box 1005, BX 37-39, IPSOAI, 09593 (e-mail: ggerber@sandiegozoo.org).

EUMECEDES BREVIROSTRIS (Short-nosed Skink). REPRODUCTION. Eumeces brevirostris is a montane skink that is widely distributed in Mexico (Flores-Villela 1993). Herpetofauna Mexico. Annotated List of the Species of Amphibians and Reptiles of Mexico, Recent Taxonomic Changes, and New Species, Special Publication No. 17, Carnegie Museum of Natural History, 73 pp.). Reports that E. brevirostris is viviparous are summarized in Blackburn (1993, Herpetologica 49:118–132). The purpose of this note is to provide information on the reproductive cycle from a histological examination of reproductive tissue from museum specimens.

Thirty-six E. brevirostris were examined six from the Natural History Museum of Los Angeles County (LACM), 20 from the University of Arizona (UAZ), and 10 from the Field Museum of Natural History (FMNH). The sample consisted of 18 males, mean SVL = 55 mm ± 6 SD, range = 46–64 mm, 16 females, mean SVL = 56 mm ± 5 SD, range = 49–66 mm, and two neonates. Lizards were collected 1938–1979. Specimens were from the Mexican states of Durango, Guerrero, Nuevo Leon, and Puebla. The posterior portion of the body cavity was opened and the left gonad was removed for histological examination except for enlarged, yolky follicles (> 5 mm diameter) or oviductal eggs, which were measured with calipers. Tissues were embedded in paraffin and sections were cut at 5 μm. Slides were stained with Harris hematoxylin followed by eosin counterstain.

Male Cycle: June (N = 6), three males in spermogenesis, three in late recrudescence with metamorphosing spermatids but no sperm; July (N = 2), late recrudescence with metamorphosing spermatids but no sperm; August (N = 9), all in spermogenisis; September (N = 1) spermogenisis. Minimum size for reproductive activity (spermogenesis) was 46 mm SVL.

Female Cycle: March (N = 1) two undamaged follicles 5 mm length; April (N = 2) one with five oviductal eggs from 9 April; one with three oviductal eggs from 9 April; June (N = 4) one with two well-developed embryos from 5 June; three with no yolk deposition which may have already given birth; July (N = 1) no yolk deposition; August (N = 8) six with no yolk deposition, two with early yolk deposition. Minimum size for reproductive activity (eggs 5 mm length) was 49 mm SVL. Two neonates were collected in June: 19 June SVL = 23 mm; 27 June SVL = 21 mm.

The reproductive cycle of E. brevirostris seems similar to that of another high-elevation, viviparous Mexican skink, E. cooperi, which was studied by Guilloteau (1983, J. Herpet. 17:144–148) and Ramirez-Bautista et al. (1996, Southwest. Nat. 41:103–110). In E. cooperi, males have maximum testicular volumes in spring and summer; females begin viellation in August, ovulate in late autumn, and births occur between May and July (Ramirez-Bautista et al., op. cit.). The timing of events in E. brevirostris reproductive cycle appear similar.

We thank David A. Kizirian (Natural History Museum of Los Angeles County), Charles H. Lowe (University of Arizona), and Ahn Rescuer (Field Museum of Natural History) for permission to examine E. brevirostris.

Submitted by STEPHEN R. GOLDBERG, Department of Biology, Whittier College, Whittier, California 90608, USA; e-mail: SGoldberg@whittier.edu.

EUMECEDES LATICOSTIS (Broad-beaked Skink). DIET. On 11 September 1997 in Morehouse Parish, Louisiana, USA (32°47′N, 91°52′W) we observed a female Eumeces laticostis eating from a peeled banana. Virt and Cooper (1986, J. Herpet. 20:408–415) reported finding no plant material in 84 stomachs of E. laticostis, but they had observed E. laticostis eating muscadine grapes and blackberries, both in the field (Cooper, pers. comm. to GP) in 1998. In 1998 we observed a male E. laticostis eating a mixture of food, prepared for box turtles, the primary ingredients of which were ground carrots and leafy green beef, crouton, and Knox® gelatin.

We thank William E. Cooper, Jr., for his help.

Submitted by GEORGE M. PATTON and MARTHA ANN MESSINGER, 2022 Georgia Drive, Baton Rouge, Louisiana 71220-3467, USA; e-mail: gpattone@bayan.com.

FURCIFER OUSTALETII (Oustalet’s Chameleon). DIET. Furcifer oustaleti is one of the largest chameleons of Madagascar; adult males can reach 68.5 cm TL (Brygoo 1970, Faune de Madagascar 33:1–318). Chameleons generally catch their prey using their long, protuberous tongue. Because of this mechanism, prey mostly consists of invertebrates (Davison 1997, Chameleons: Their Care and Breeding. Hancock House Publishers, Blaine, Washington, 118 pp.). Mammals (mice) and small birds have also been noted as potential prey (Nexus 1999, Chamillons - Bunte Juwelen der Natur. Chimaira, Frankfurt: 249 pp.), but to our knowledge there have been no reports of Malagasy chameleons preying on

134

birds. On 23 May 2000 at ca. 1600 h, one of us (GG) observed an adult male F. oualanei at Ampitampy Forest Station (18°20'S, 45°47'E; elev. ca. 70 m) on a shrub branch at ca. 2 m height. The lizard was carrying a dead bird in its mouth (possibly a young Foudia madagascariensis) (Fig. 1). During the observations (ca. 30 min), the chameleon moved along the branch without leaving its prey, and finally swallowed it completely. The bird was not a hatchling (as recognizable by its well-developed feathers), and therefore almost certainly was not captured in a nest.

Submitted by \name{GERARDO GARCIA}, Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent CT2 7NS, U.K. (e-mail: gerardo.garcia@wanadoo.fr), and \name{MIGUEL VENCES}, Laboratoire des Reptiles et Amphibiens, Muséum National d'Histoire naturelle, 25 rue Cuvier, 75005 Paris, France (e-mail: m.vences@t-online.de).

\section*{Gekko gecko (Spotted Fimbriate Gecko). PREY AND HABITAT}

Few cases of scorpions preying on lizards have been reported: Centruroides exilicauda preying on Phyllodytes sp., Hadronotus loriaiiensis on Cercomorphus sp., Pfunternus vilboni on Puslosephalus ranulis, and Ophiothelphusa cristata on Pachylophus sp. (SMITH, 1990). In Polis (ed.), The Biology of Scorpions. Stanford Univ. Press, Stanford, California, 587 pp.). The first two examples concern species from North America and the other two from South Africa. No data concerning scorpions preying on Malagasy lizards are available. On 14 March 2000 we observed a scorpion eating a subadult specimen of Gekko gecko at Montagne des Français, northern Madagascar (12°19'34"S, 49°20'00"E, 355 m elev.). The species was found during the day under a stone in a degraded dry forest. The Gekko gecko (SVL ca. 33 mm) had already been partly consumed (tail, left hindleg, and part of digestive tract); it was preserved and deposited in the Zoologische Staatssammlung, München. An adult male Gekko gecko was observed near the site on 14 May 2000. The scorpion was an adult male G. flavicaudus with a total length of 85 mm, including the tail; it was observed at the Museum national d'Histoire naturelle (MNHN RS 8539). Gekko flavicaudus is known from Montagne des Français (LOURENÇO, 1996; SORCI (1997; Cherricella, Scorpio); Foren de Madagascar 57, 182 pp.). It lives almost exclusively in dry areas (LOURENÇO and WOOSLEY, 1998). Its geographic range is 18°38' - 18°87' and it is an active predator of prey with rapid movements, similar in most species from deserts.